Меню

В очаге воспаления фагоцитоз осуществляется

В очаге воспаления фагоцитоз осуществляется

Фагоцитоз — жизненно важная местная реакция организма, сформированная в процессе эволюции и осуществляемая с помощью макро- и микрофагов. Последние обеспечивают элиминацию из места внедрения (попадания) различных чужеродных (антигенных) агентов путём эндоцитоза с помощью фаголизосом, образовавшихся в результате слияния фагосом (больших эндоцитозных пузырьков) с лизососмами (содержащими различные гидролитические ферменты). Благодаря фагоцитозу происходит ограничение дальнейшего местного повреждения тканей флогогенными агентами для защиты организма в целом.

Термины «фагоцитоз» и «фагоциты» предложил использовать И.И. Мечников. Он был удостоен Нобелевской премией в 1908 г. за разработку процесса фагоцитоза разными лейкоцитами (моноцитами и гранулоцитами) и его важной защитной роли для организма.

В процессе фагоцитоза И.И. Мечников выделил четыре стадии:
— первая стадия — приближение фагоцита к объекту фагоцитоза (антиген у);
— вторая стадия — прилипание <адгезия) фагоцита к чужеродному объекту (после распознавания последнего);
— третья стадия — поглощение чужеродного объекта фагоцитом (с помощью образовавшейся фаголизосомы и при участии протеинкиназы С инов Са2)
— четвертая стадия — внутриклеточное переваривание чужеродного объекта (с полным или неполным разрушением последнего с помощью кислородзависимой и кислороднезависимой цитотоксичности фагоцитов).

В кислородзависимой цитотоксичности фагоцитов по отношению к объектам фагоцитоза принимают участие образующиеся анион супероксида (02 ),синглетный кислород (02), гидроксильный радикал (ОН), пероксид водорода (Н202), ион НСlO-.

В то же время сам фагоцит ими не повреждается в результате защиты образующимися и поступающими ферментными и неферментными антиоксидантами.
В кислороднезависимой цитотоксичности фагоцитов участвуют лизоцим, лактоферрин, катионные белки, катепсины, протеиназы (эластаза, коллагеназа и др.), дефензины и др. Развитие той или иной стадии фагоцитоза обусловлено действием на фагоциты различных (перечисленных выше) хемоаттрактантов, опсонинов (фрагментов антител и, главным образом, IgG и IgM, компонентов системы комплемента и лектинов, связывающихся с клеточной мембраной микроорганизма и существенно повышающих эффективность фагоцитоза), а также рецепторов на поверхности лейкоцитов (фагоцитов).

Пролиферация — процесс новообразования клеток путём их размножения (деления). Основу пролиферации в очаге воспаления составляет репа-ративная регенерация (лат. regeneration — возрождение, обновление, лат. reparatio — восстановление, возобновление) — процесс восстановления повреждённых клеточно-тканевых структур. При воспалении процесс репаративной регенерации активизируется за счёт эпителиальных и (особенно) соединительнотканных структур, в частности фибробластов. Так, миграция фибробластов в очаг воспаления начинается в 1-2-е сутки от момента альтерации, в последующие дни фибробласты начинают активно формировать коллагеновые волокна и другие составляющие экстраклеточного матрикса.

источник

Воспаление и фагоцитоз.

Фагоцитоз – активный захват и поглощение живых клеток или каких-либо небольших частиц одноклеточными организмами либо особыми клетками – фагоцитами. Фагоцитоз – одна из защитных реакций организма, главным образом при воспалении. Открыт И.И.Мечниковым в 1882 году.

При значительной вирулентности микроба и при достаточной инфекционной дозе кожные и слизистые барьеры могут оказаться совершенно недостаточными, и микроб проникает в кожу, слизистые оболочки либо в подкожный или в подслизистый слой. В значительном числе случаев при этом развивается воспалительный процесс. Изучение роли этого процесса в защите организма от микробов связано с именем И.И. Мечникова.

Мечников изучал функции зародышевых листков, в частности среднего зародышевого листка – мезодермы у эмбрионов беспозвоночных животных; вводя в организм губки какое-либо постороннее тело (стеклянный капилляр), он наблюдал, что оно окружалось подвижными амебовидными клетками мезодермы, способными заглатывать различные инертные частицы. Аналогичный процесс – устремление лейкоцитов, окружение и поглощение ими инородного тела, вызывающего воспалительный процесс – наблюдался и у других видов животных, как имеющих кровеносную систему, так и лишённых её. Этот процесс поглощения клетками микробов и других корпускулярных элементов И.И. Мечников назвал фагоцитозом. Многочисленные исследования, поставленные с различными микробами, позволили Мечникову сделать заключение о превалирующем значении фагоцитоза в воспалительных процессах и о защитной функции самого процесса воспаления. Фагоцитоз в воспалительной реакции является действительно одним из существенных механизмов защиты на всех ступенях зоологической лестницы. Однако защитный механизм воспалительной реакции оказался сложнее, чем это можно было думать, и фагоцитоз не исчерпывает всех тех возможностей защиты, которые несёт с собой воспалительный процесс. В механизме воспаления существенную роль играют гистамин и серотонин, освобождающиеся главным образом из тучных клеток. Они влияют на проницаемость стенок капилляров и основного вещества соединительной ткани и усиливают фагоцитарную активность эндотелия и мезенхимы. Существенное значение имеют глобулиновый фактор проницаемости и его ингибитор, а также многие другие вещества типа ферментов, меняющиеся на различных стадиях воспалительного процесса.

Воспалённая ткань способна фиксировать также белки и инертные частицы. Чужеродный белок, введенный в зону воспаления в коже или в брюшной полости, задерживается на более длительный период, чем в нормальных тканях, причём задержка в коже более длительна, чем в брюшной полости. Подобные же задержки в очаге воспаления наблюдались при введении красок в брюшную полость. Следовательно, воспалительный процесс, независимо от того, протекает ли он в иммунном или не иммунном организме, препятствует диссеминации микробов. Но возникает он не сразу после внедрения микроба, даже в тех случаях, когда микроб, например стафилококк, обладает способностью вызывать наиболее сильное воспаление. Если микробы обладают большой инвазионной способностью, некоторая часть их проникает в организм раньше, чем воспалительная реакция возникнет и станет настолько интенсивной, что сможет препятствовать диссеминации возбудителя. Скорость возникновения острой воспалительной реакции зависит от характера раздражителя. Также существенное значение имеет и стадия воспалительного процесса. Первые этапы воспалительной реакции сопровождаются активной гиперемией и ускоренным током крови и лимфы. В этот период бактерии могут быстро уноситься с места введения, что может способствовать развитию инфекционного процесса. Однако эта стадия весьма непродолжительна, и наступающие вскоре сосудистые расстройства и приток лейкоцитов препятствуют распространению инфекции. Таким образом, воспалительная реакция является механизмом защиты, препятствующим диссеминации микробов, но вступающим в действие не сразу же после внедрения микробов в организм, а по истечении нескольких часов. В последней стадии воспалительного процесса, когда в зоне воспаления скапливаются громадные количества лейкоцитов, имеет место и интенсивное уничтожение оставшихся микробов благодаря фагоцитозу.

Механизм фиксации и аккумуляции микробов и инородных веществ в зоне воспаления сложен. Лимфатическая блокада, возникающая в воспалительной зоне вследствие стаза и свёртывания лимфы, является одним из основных факторов, препятствующих диссеминации микробов из воспалительного очага. Эта блокада образует механический барьер, состоящий из коагулированной плазмы, и представляет собой значительное препятствие для прохождения микробов. При остром воспалительном процессе наблюдается не замедление, а ускорение тока лимфы через зону воспаления, и бактерии, и другие инородные частицы фиксируются в этой зоне благодаря действию различных физико-химических факторов.

Значительную роль в фиксации и уничтожении микробов в воспалительном очаге играют фагоцитоз и антитела.

Лейкоциты, которые в изобилии скапливаются в зоне воспаления, образуют своеобразный вал, препятствующий диссеминации организмов. Наряду с этим клеточные элементы лейкоцитарного вала активно уничтожают возбудителя. Повышение капиллярного давления и увеличение проницаемости капилляров, имеющие место при воспалении, вызывают увеличение количества жидкости, проникающей через эндотелий капилляров. Воспалительная зона обогащается содержащимися в крови веществами, в том числе и антителами (нормальными и иммунными). Антитела, воздействуя на бактерии, делают их более доступными клеточным факторам защиты и задерживают их в зоне воспаления. Возможно, что алексин, бетализин, и другие неспецифические факторы защиты, концентрируясь в зоне воспаления, играют роль в сложном механизме защиты, обусловленном воспалительной реакцией.

Как известно, основным свойством фагоцитов является их способность к внутриклеточному перевариванию. Однако не всегда и не в отношении всех микробов эта способность выражена в должной степени. Иногда микробы, захваченные фагоцитами, не только не перевариваются ими, но сохраняются и размножаются в них (незавершённый фагоцитоз). В этом случае фагоцитоз не является защитной реакцией организма, а наоборот, защищает микробы от бактерицидных свойств организма. Однако такое явление встречается редко. Другой особенностью фагоцитов является их положительный химиотаксис в отношении микробов и их продуктов. Положительный химиотаксис и обусловливает возможность уничтожения проникающих в организм микробов скапливающимися в месте их проникновения лейкоцитами. Однако большие дозы микробов или токсинов могут вызвать отрицательный химиотоксис, и тогда фагоцитарная реакция не может быть реализована. При воспалительной реакции имеет место значительное скопление лейкоцитов, которые проходят через стенки сосудов вследствие химиотоксического притяжения. Гной, накапливающийся при воспалительных процессах, и представляет собой эти скопления.

Но и при отсутствии воспаления защитная роль фагоцитоза может быть обнаружена вполне демонстративно. При введении иммунному животному микробов последние немедленно захватываются фагоцитами; так, например, вводя культуру сибирской язвы лягушке, можно наблюдать, что через некоторое время все микробы фагоцитируются, и инфекция не развивается. Тоже можно наблюдать при введении самых разнообразных непатогенных микробов любому животному. В восприимчивом организме фагоцитоз либо вовсе не наблюдается, либо наблюдается только в незначительной степени. Фагоциты способны захватывать живых микробов. Если взять у лягушки, получившей культуру сибиреязвенных бацилл, экссудат, содержащий лейкоциты, целиком захватившие всех бацилл, и ввести его морской свинке, последняя погибнет от сибирской язвы, так как лейкоциты лягушки, попав в неподходящую среду в организме морской свинки, погибают и освобождают таким образом заключённых в них вполне вирулентных микробов. Доказательством несомненного значения фагоцитоза как защитного механизма организма является также то обстоятельство, что подавление фагоцита или создание для него препятствий понижает резистентность организма. Если споры столбняка хорошо отмыть от токсина и ввести в животный организм, то они быстро фагоцитируются, причём заболевания столбняком не наступит. Однако если ввести эти споры в ватном тампоне, когда лейкоциты не смогут их поглотить или сделают это с большим опозданием, споры успевают прорасти и наступает заболевание и смерть. Если ввести культуру микробов вместе с молочной кислотой, обладающей отрицательным химиотоксическим действием на лейкоцитов, смерть наступит от такой дозы культуры, которая без кислоты легко переносится животным. С другой стороны, увеличение количества лейкоцитов, особенно в месте внедрения инфекции, несомненно, повышает резистентность организма. Оно может быть вызвано и неспецифическими агентами. Несомненно, что лейкоцитоз является одним из факторов неспецифического иммунитета, который воспроизводят при так называемой протеинотерапии.

Связывание (адсорбция) лейкоцитами токсинов многократно было описано разными авторами в отношении как дифтерийного, так и столбнячного токсина, хотя полученные результаты были довольно противоречивы.

Реакция фагоцитоза имеет защитную функцию не при всех инфекционных заболеваниях. Например, при менингите, вызванном палочкой инфлюэнцы, последняя поглощается, но не разрушается фагоцитами, защищающими её от действия антител. Но при подавляющем большинстве бактерийных инфекций фагоцитоз в той или иной мере несёт защитные функции. Иное значение имеет фагоцитоз при вирусных инфекциях. Фагоцитарная реакция не при всех инфекционных процессах оказывается равнозначной. Это вполне соответствует взглядам И.И. Мечникова, который при изучении фагоцитарных реакций у различных животных и с различными микробами установил различные формы этой реакции в её эволюционном развитии. Стафилококк захватывается и убивается лейкоцитами, гонококк фагоцитируется ими, но остаётся живым внутри лейкоцитов, и, наконец, некоторые вирусы вообще не фагоцитируются лейкоцитами. Возможно, что эти три примера представляют собой три различные стадии эволюционного развития фагоцитарной реакции.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Фагоцитоз в очаге воспаления

Одной из важнейших функций, которую выполняют лейкоциты, попавшие в очаг воспаления, является фагоцитоз.

Этому явлению И. И. Мечников (1883 г.) отводил роль главного приспособительного явления, определяющего суть воспаления. Фагоцитоз – это явление захвата клеткой посредством рецепторного эндоцитоза при участии микрофиламентов объектов с диаметром более 1 мкм. Разновидностями фагоцитоза можно назвать трансцитоз, адсорбтивный и жидкостный пиноцитоз. У высших животных фагоцитоз является своеобразным «санитаром» организма, обезвреживая погибшие и атипичные клетки, иммунокомплексы (тем самым предупреждая иммунокомплексные болезни), обеспечивая процессинг антигенов и их представление лимфоцитам. Несмотря на представленную полезность фагоцитоза надо помнить о том, что этот процесс несет в себе целый ряд повреждающих механизмов.

Способностью к фагоцитозу обладают следующие группы клеток:

Ø микрофаги (диаметр клеток сравнительно мал 6-8 мкм) – полиморфонуклеарные гранулоциты: нейтрофилы, эозинофизы и базофилы;

Ø макрофаги (диаметр клеток достигает 20 мкм) – мононуклеарныегранулоциты: моноциты крови и происходящие из них тканевые макрофаги;

Ø астроциты и клетки микроглии мозга также могут быть отнесены к фагоцитам, поскольку способны проявлять данное свойство.

Мононуклеарные фагоциты и гранулоциты образуются под влиянием ИЛ-1 из ранних предшественников. По какому пути созревания пойдет процесс (либо созревание нейтрофилов, либо моноцитов, либо эозинофилов) зависит от наличия того или иного спектра вырабатываемых в воспалительном очаге цитокинов.

Большая часть зрелых форм лейкоцитов находится в костном мозге (до 90%) и при появлении в крови С-фрагмента комплемента, кахексина и ИЛ-1 костный мозг выбрасывает в кровь лейкоциты. В случае, если флогогенный (воспалительный) агент не устранен и процесс продолжается, в крови могут появиться юные формы лейкоцитов-нейтрофилов (сдвиг лейкоцитарной формулы влево), которые менее способны к фагоцитозу из-за незрелости фагоцитарных механизмов.

Нейтрофилы после фагоцитоза погибают, а не участвующие в фагоцитозе погибают в результате апоптоза в крови спустя 12-14 ч после их попадания в кровь, либо через 2-4 суток после попадания их в ткани. В очаге воспаления погибшие нейтрофилыформируют гной. Надо особенно отметить, что гной может быть стерильным в том случае, когда произошла полная гибель возбудителя.

В отличие от нейтрофилов макрофаги способны осуществлять фагоцитоз многократно. Такая выживаемость объясняется отсутствием ферментативных систем, способствующих образованию гипохлорита – мощного окислителя, способного повредить клетку (как это имеет место у нейтрофилов). Макрофаги вырабатывают целую серию транспортных белков (транскобаламин, трансферрин и др.), антиоксиданты, ингибиторы протеаз, γ-интерферон, ИЛ-1, кахексин. Макрофаги готовят реакцию преиммунного ответа. Ряд возбудителей: салмонеллы, листерии, риккетсии, бруцеллы и др. фагоцитируются только макрофагами.

Фагоцитоз проходит 4 фазы(рис. 16):

1. Приближение к объекту фагоцитоза. Основной, ведущий механизм, обеспечивающий целенапавленное движение фагоцита к объекту по градиенту концентрации вещества – это хемотаксис. Изменение концентрации хемоаттрактанта в 0,1% вызывает активное движение фагоцита в сторону большей концентрации. Само движение фагоцита обеспечивается микрофиламентами цитоскелета. В этом процессе играют роль ионы Са 2+ . На полюсе, который обращен в сторону хемоаттрактанта увеличивается количество рецепторов и каналов, которые способствуют входу ионов Са 2+ и перестройке цитоскелета ведущего полюса путем активации ассоциации гельзолина (белок цитоскелета, содержит три актин-связывающих участка и участок связывания с Са 2+ ) с актином и филамином (белок микрофиламентов). Организуется гелеподобная структура. Кальмодулин способствует соединению миозиновых молекул и взаимодействию актина с миозином, что сопровождается сокращением и переходом золя в гель. Цитоплазма подтягивается к переднему полюсу и таким образом обеспечивается «скачок» в сторону хемоаттрактанта. Вещества, способствующие целенаправленному движению, получили название хемоаттрактантов. Сюда можно отнести следующие группы веществ и соединений:

ü продукты жизнедеятельности или компоненты микроорганизмов. Особенно узнаваемым лейкоцитом соединением является аминокислота N-формил-метионин, которая входит в состав большого количества возбудителей;

ü иммунные комплексы и иммуноглобулины. Распознавание лейкоцитом происходит за счет специфического Fc-рецептора;

ü компоненты системы комплемента. На лейкоцитах имеются специфические рецепторы, с помощью которых они осуществляют хемоаттрактивный и опсонизирующий эффекты (способствующие опсонизации – адсорбции – на поверхности организмов, стимулирующих и облегчающих процесс фагоцитоза);

ü продукты повреждения и метаболизма клеток. Фрагменты ДНК и РНК, концентрация которых растет при разрушении клеток, активируют пуриновые рецепторы на фагоцитах, которые и способствуют хемотаксису (вернее сказать некротаксису). При разрушении клеток образуются производные арахидоновой кислоты, тромбоксан A2, которые также являются активными хемоттрактантами.

В организме вырабатывается ряд других хемоаттрактантов, которые нельзя отнести к вышеуказанным группам. К ним можно отнести: С-реактивный белок, кахексии, ИЛ-1, тромбоцитарный фактор роста, хемотаксические белки для нейтрофилов и базофилов, фактор активации тромбоцитов, нейтрофильные катионные белки и др.

Наличие различных хемоаттрактантов и разной чувствительности к ним фагоцитов определяет стадийность процесса воспаления и преемственность различных его этапов.

2. Прилипание фагоцита к поверхности объекта; В результате хемотаксиса фагоцит приближается к фагоцитируемому объекту и наступает следующая стадия – прилипание. Последнее является результатом рецепторного взаимодействия, причем это взаимодействие может осуществляться напрямую, либо с участием посредников – опсонинов. Опсонины значительно ускоряют процесс прилипания. В качестве опсонинов выступают иммуноглобулины G1, G3; М и Е и компоненты системы комплемента С3b. Распознавание иммуноглобулинов происходит при помощи Fc-рецепторов. Следует отметить, с помощью этого же Fc-рецептора вирус желтой лихорадки «обманывая организм», проникает в клетки человека.

Прилипание запускает следующий процесс в фагоците, который получил название активации фагоцитов. Она сопровождается метаболическим взрывом, без которого невозможен эффективный фагоцитоз. Метаболический взрыв обусловлен активацией расщепления глюкозы по пентозному пути, усилением гликогенолиза.

Активация фагоцита может быть вызвана высокими концентрациями медиаторов воспаления: ИЛ-1; ИЛ-3; кахексином и др. без явления фагоцитоза.

Из гранулоцитов начинают выделяться медиаторы воспаления, из макрофагов выделяются ИЛ-1, ИЛ-6, кахексин, производные арахидоновой кислоты, активные формы кислорода и хлора. Действие лейкопептидазы нейтрофилов завершается образованием лейкокинов, существенно усиливающих фагоцитоз и активность Т-лимфоцитов, а также стимулирование ряда эндокринных желез через активацию гипофиза.

3. Погружение объекта в цитоплазму фагоцита. Погружение объекта в фагоцит характеризуется поэтапным охватом псевдоподиями фагоцита объекта и погружением в цитоплазму. Если объект покрыт иммуноглобулинами, то дополнительные факторы не требуются. Опсонизация объекта фрагментом комплемента (С3b) включает активацию цитокиновых рецепторов, что также способствует погружению. В результате такого механизма объект оказывается окружен со всех сторон мембраной фагоцита – это так называемая фагосома. С помощью специальных белков фьюзогенов фагосома сливается с лизосомами и гранулами фагоцита – образовалась фаголизосома. Если этот процесс нарушается, то наблюдается незавершенный фагоцитоз. Такое явление имеет место при попадании возбудителей коклюша, туберкулезных микобактерий, которые выделяют антилектины, препятствующие слиянию фагосомы с гранулами фагоцита.

Процесс слияния может сопровождаться выбросом содержимого гранул наружу фагоцита – «отрыжка при питании». Это вариант экзоцитоза, который позволяет усилить бактерицидность среды, окружающий фагоцит. При этом существенно могут пострадать окружающие ткани. Такой же эффект может наблюдаться при так называемом фрустрированном фагоцитозе. Суть его сводится к тому, что при невозможности полного захвата объекта фагоцит выбрасывает в окружающую среду активные формы медиаторов воспаления. Для определенных возбудителей такой эффект является губительным, а для собственных тканей органов и тканей он является флогогенным (повреждающим).

4. Переваривание объекта. После этапа погружения наблюдается следующая фаза по современной терминологии называемая перевариванием. В этой фазе включаются все известные механизмы повреждения клетки. Нa первом месте выступают кислородозависимые цитотоксические механизмы, приводящие к образованию активных форм кислорода и его соединений. Эти механизмы работают совместно с катионными белками, лактоферрином, рН, дифензином, гидролазами, диоксидом азота и др. Заключительным этапом всех этих реакций является появление признаков пролиферации.

Дата добавления: 2015-07-23 | Просмотры: 1397 | Нарушение авторских прав

источник

Фагоцитоз

Эмигрировавшие в очаг воспаления лейкоциты имеют большое значение. Они участвуют в выработке антител, доставляют в очаг воспаления энергетические вещества (в частности, гликоген), богаты ферментами, способствующими эмиграции и пролиферации ткани (т.н. трефонами), отграничивают здоровые ткани (т.н. «лейкоцитарный вал»), являются источниками пирогенов и, основная их роль, участвуют в процессе фагоцитоза.

Фагоцитоз — эволюционно выработанная защитно-приспособительная реакция организма, заключающаяся в узнавании, активном захвате (поглощении) и переваривании микроорганизмов, разрушенных клеток и инородных частиц специализированными клетками-фагоцитами. К ним относятся ПЯЛ (в основном нейтрофилы), клетки системы фагоцитирующих мононуклеаров (моноциты, тканевые макрофаги), а также клетки Купфера в печени, мезангиальные клетки почек, глиальные клетки в ЦНС, альвеолярные фагоциты в легких, свободные и частично фиксированные макрофаги в лимфоузлах и селезенке, перитонеальные и плевральные макрофаги и др. Различают 4 стадии фагоцитоза.

1 стадия -приближение фагоцита к инородному предмету. Основу этого движения составляют описанные выше явления хемотаксиса лейкоцитов.

2 стадия -прилипания фагоцита к объекту. Она объясняется способностью фагоцитов образовывать такие цитоплазматические выпячивания, которые выбрасываются по направлению к объекту фагоцитоза и с помощью которых осуществляется прилипание. Определенное значение при этом имеет поверхностный заряд лейкоцитов. Имея отрицательный заряд, лейкоциты лучше прилипают к объекту с положительным зарядом. Прилипанию предшествует опсонизация, т.е. покрытие иммуноглобулинами М и J и фрагментами СЗ, С5, С6, С7 бактерий и поврежденных частиц клеток, благодаря ему они приобретают способность прилипать к фагоциту. Процесс прилипания сопровождается усилением метаболической активности лейкоцита, его аэробного и анаэробного гликолиза и повышением 2-3 раза поглощения.

3 стадия — поглощение объекта лейкоцитами (обволакивание) может происходить двумя способами. Контактирующий с объектом участок цитоплазмы втягивается внутрь клетки, а вместе с ним втягивается и объект. Второй способ заключается в том, что фагоцит присасывается к объекту своими длинными и тонкими псевдоподиями, а потом всем телом подтягивается в сторону объекта и обволакивает его. И в том и в другом случае инородная частица окружена цитоплазматической мембраной и вовлечена внутрь клетки. В итоге образуется свободный мешочек с инородным телом (фагосома). Образованию фагосомы предшествует повышение метаболизма с активацией НАДН-зависимой оксидазы, что обеспечивает синтез перекиси водорода. В результате дегрануляции лейкоцитов выделяются лизосомальные ферменты и бактерицидные белки. Перекись водорода распадается под влиянием оксидаз с образованием активной молекулы кислорода, которая взаимодействует с компонентами мембраны клетки, разрушая ее путем перекидного окисления.

4 стадия — внутриклеточного расщепления и переваривания фагоцитированных микробов и остатков поврежденных клеток. Лизосома приближается к фагосоме, их мембраны сливаются, образуя единую вакуоль, в которой находится поглощенная частица и лизосомальные ферменты (фаголизосома). В фаголизосомах устанавливается оптимальная для действия ферментов реакция (рН около 5) и начинается переваривание поглащенного объекта.

В лизосомах содержатся ферменты (протеазы, карбогидразы, липазы и пр.), обеспечивающие гидролиз веществ, содержащихся в клетках, в том числе и микробных, но их бактерицидное действие, обусловлено, в основном, наличием миелопероксидазы. Миелопероксидаза железосодержащий основной фермент, который содержится в азурофильных гранулах нейтрофильных гранулоцитов, и бактерицидное действие его заключается в том, что в присутствии перекиси водорода и йода он галогенизирует белки микроорганизмов.

Наряду с перевариванием инородных объектов и поврежденных клеток под влиянием гидролитических ферментов, выделившихся в фагосому, гибнут и сами фагоциты, являясь источником образования гноя, а продукты разрушения стимулируют процессы пролиферации в очаге воспаления.

Особенно отчетливо значение фагоцитоза в патогенезе воспаления выявляется при его нарушении, когда даже слабовирулентные микроорганизмы могут вызвать сепсис. Фагоцитоз в этом случае носит характер незавершенного, и микробы, поступая с лейкоцитами из очага воспаления в различные органы, обеспечивают явление сепсиса.

Покраснение (rubor) — обусловлено развитием артериальной гиперемии, увеличением притока крови с повышенным содержанием О2, увеличением количества функционирующих капилляров.

Припухлость (tumor) — объясняется артериальной и венознозной гиперемией, экссудацией, эмиграцией лейкоцитов.

Жар (саlог) — обусловлен усилением обмена веществ на ранних стадиях воспаления, притоком крови с более высокой t° (особенно при воспалении кожи и слизистых), усилением теплоотдачи за счет гиперемии.

Боль (dо1ог) — вызывается раздражением рецепторов в очаге воспаления медиаторами воспаления (особенно кининами и простагландинами), изменением рН, осмотического давления, механическим раздражением рецепторов в результате припухлости в очаге воспаления.

Нарушение функции (function laesa) является следствием повреждения клеток, нарушения обмена веществ, кровообращения, накопления медиаторов воспаления, изменения электролитного баланса, рН, осмотического и онкотического давления, процессов пролиферации. В этих условиях осуществления функции компонентами функционального элемента (А.М.Чернух), а следовательно, и органа невозможно.

источник

Виды фагоцитоза, механизмы и стадии фагоцитоза. Причины недостаточности фагоцитоза и их значение при воспалении.

Проникнув в очаг В., фагоциты выполняют свою главную фагоцитарную функцию

Фагоцитоз – защитно-приспособительная реакция организма, заключающаяся в узнавании, активном захвате (поглощении) и переваривании м/о, разрушенных клеток и инородных частиц специализированными клетками – фагоцитами. К ним относятся полиморфно-ядерные лейкоциты (в основном нейтрофилы), клетки системы фагоцититрующих мононуклеаров (моноциты, тканевые макрофаги), а также клетки Купфера в печени, мезангиальные клетки почек, глиальные клетки в ЦНС и др.

Рзличают четыре стадии фагоцитоа: приближение (хемотаксис), прилипание (аттракция, адгезия), захват фагоцитиремого объекта (поглощение), внутриклеточное переваривание. В процессе узнавания большую роль играют особые компоненты сыворотки крови, которые являются молекулярными посредниками при взаимодействии микробов с фагоцитами и обуславливающие усиление фагоцитоза – опсонины. К ним относят антитела IgGi, IgG3, IgM, иммуноглобулины IgAl, IgA2, термолабильные субкомпоненты комплемента. Основная роль при поглощении принадлежит сократительным белкам, способствующим образованию псевдоподий.

Поглощение объекта лейкоцитами может происходить двумя способами:

I) контактирующим с объектом участок цитоплазмы втягивается внутрь клетки, а вместе с ним втягивается и объект;

2) фагоцит прикасается к объекту своими длинными и тонкими псевдоподиями, а потом всем телом подтягивается в сторону объекта и обволакивает его. И в том и в другом случае инородная частица окружена плазматической мембраной и вовлечена внутрь клетки. В итоге образуется своеобразная гранула с инородным телом (фагосома). Затем фагосома приближается к лизосоме, их мембраны сливаются, образуется единая вакуоль, в которой находятся поглощенноая частица и лизосомальные ферменты (фаголизосома). В фаголизосомах начинается переваривание поглощенного объекта. Эффективность фагоцитоза возрастает, когда в процесс подключается так называемая кислородная система. При фагоцитозе повышается потребление кислорода, причем столь резкое, что его принято называть “респираторным взрывом”. Смысл столь резкого (до 10 раз) повышения потребления кислорода состоит в том, что он используется для борьбы с микроорганизмами. Происходит образование токсичных для микробов активных форм О2 – перекиси водорода, гидроксильных радикалов, супероксидного аниона, синглетного кислорода. Эти высокоактивные соединения вызывают перекисное окисление липидов, белков, нуклеиновых кислот, углеводов и при этом повреждают построенные из этих веществ клеточные структуры микроорганизмов.

В этой ситуации фагоцит и сам подвергается агрессивному действию названных веществ, но он обладает мощным механизмом, благодаря которому избыточного накопления активных форм кислорода не происходит. Защитную роль при этом играют прежде всего два фермента: глютатионпероксидаза и глютатионредуктаза, роль которых заключается в том, что первый переносит водород на окисленный глютатион, а второй – снимает этот водород и передает его на Н2О2, в результате чего образуются две молекулы воды.

Определенную роль играет каталаза, выводящие из клеток избыток перекиси водорода. Супероксидный анион обезвреживается особым ферментом — супероксиддисмутазой. У фагоцитов имеются и другие не связанные с кислородом (кислороднезависимые) механизмы борьбы с микроорганизмами. К ним относятся: лизоцим, разрушающий мембраны бактерий; лактоферрин, конкурирующий за ионы железа и, наконец, дефензины (белки со структурой насыщенной аргинином), катионные белки, нарушающие структуру мембран микроорганизмов. Совместное действие механизмов обеих групп приводит к разрушению объектов фагоцитоза.

Однако наряду с завершенным фагоцитозом в микрофагах наблюдается, например, при некоторых инфекциях фагоцитоз незавершенный или эндоцитобиоз, когда фагоцитированные бактерии или вирусы не подвергаются полному перевариванию, а иногда даже начинают размножаться в цитоплазме клетки. Эндоцитобиоз объясняют недостатком или даже отсутствием в лизосомах макрофагов антибактериальных катионных белков, что снижает переваривающую способность лизосмальных ферментов. Фагоцит, поглотивший бактерии, но не способный их переварить становится переносчиком инфекции по организму, способствует ее дессиминации.

Выявлены болезни, сопровождающиеся первичными (врожденными) или вторичными (приобретенными) дефектами фагоцитоза – “болезни фагоцитов”. К ним относится так называемая хроническая гранулематозная болезнь, возникающая у детей, в фагоцитах которых из-за дефекта оксидаз нарушено образование перекисей и, следовательно, процесс инактивации микробов. Сниженная спосбность к уничтожению бактерий выявлено у людей нейтрофилы которых синтезируют недостаточное количество миелопироксидазы, глукоза-6-фосфатдегидрогеназы, пируваткиназы.

Необходимо отметить, что особую роль в развитии учения о фагоцитозе сыграли исследования И.И.Мечникова. И.И.Мечников (1892) разработал учение о фагоцитозе и отвел ему важнейшую роль в динамике В. На основании своих наблюдений он построил биологическую теорию В. Он впервые рассмотрел воспалительный процесс с эволюционных позиций, заложил основы сравнительной патологии.

Недостаточность фагоцитоза –состояние наследственной и приобретенной природы, которое характеризуется снижением неспецифической резистентности организма, уменьшением интенсивности антителообразования и проявляется постоянными рецидивирующими гнойно-септическими заболеваниями.

Причины патологии фагоцитоза

1. Уменьшение количества фагоцитов.

2. Структурно-функциональные изменения фагоцитов врожденного и приобретенного характера.

3. Изменения гормонально-гуморальной регуляции процесса фагоцитоза и др.

Уменьшение количества фагоцитов, прежде всего нейтрофильных лейкоцитов, возникает при лейкопениях врожденного и приобретенного характера, в частности при миелотоксических, выделительных, перераспределительных и иммуноаллергических лейкопениях.

Снижение фагоцитарной активности может быть обусловлено:

1) нарушением сократительных структур фагоцита;

2) изменением структуры рецепторов, чувствительных к хемотаксическим веществам и опсонинам;

3) снижением активности ферментов, осуществляющих нормальный метаболизм фагоцитов, в частности энергетический;

г) дефектами бактерицидных систем фагоцитов.

При дефиците опсонинов затрудняется узнавание чужеродного объекта, а также прикрепление фагоцита на его поверхности.

Декомпенсированные сдвиги кислотно-щелочного равновесия (ацидозы и алкалозы) приводят к снижению фагоцитарной активности.

Обратите внимание:  Воспаление лимфоузла на шее у ребенка 2 года ребенку

Эффективность неспецифических клеточных механизмов защиты во многом зависит от гормонального статуса организма. Так, недостаточный уровень тироксина, эстрогенов обуславливает снижение активности фагоцитоза. Повышение продукции глюкокортикоидов (например, при болезни и синдроме Иценко – Кушинга), или экзогенное поступление в организм высоких доз этих гормонов тормозит гистиомоно-цитарную реакцию в очагах воспаления, а также способствует незавершенности фагоцитоза, так как препятствует формированию фаголизосом.

источник

Фагоцитоз, его стадии. Механизмы приближения и прилипания и их нарушения. Фагоцитоз и иммунитет. Роль фагоцитоза в апоптозе клеток. Значение работ в учении о воспалении.

Фагоцитоз — процесс поглощения, разрушения и выделения из организма патогенов.

В человеческом организме ответственными за него являются моноциты и нейтрофилы.

Процесс фагоцитоза бывает завершенным и незавершенным.

Завершенный фагоцитоз состоит из следующих стадий:
• активация фагоцитирующей клетки;
• хемотаксис или движение к фагоцитируемому объекту;
• прикрепление к данному объекту (адгезия);
• поглощение этого объекта;
• переваривание поглощенного объекта.

Незавершенный фагоцитоз прерывается на стадии поглощения, при этом патоген остается живым.

Процесс фагоцитоза подразделяется на 4 стадии:

1.Приближение к объекту фагоцитоза;

2.Прилипание фагоцита к поверхности объекта (распознавание рецепторами фагоцита опсонических детерминант объекта)

3.Погружение объекта в цитоплазму фагоцита

4.Переваривание (или, шире — киллинг-эффект, деградация объекта).

Приближение может быть и случайным, особенно, у фиксированных фагоцитов. Однако, главным его механизмом служит хемотаксис.

Хемотаксисом называется направленное движение живых клеток по градиенту концентрации какого-либо распознаваемого ими вещества. Вещества, привлекающие клетки, называются хемоаттрактантами. По сути дела, хемоаттрактивная чувствительность, присущая всем лейкоцитам, включая нефагоцитирующие клетки — это прообраз обоняния на одноклеточном уровне.

Прилипание лейкоцитов к объектам фагоцитоза связано с распознаванием поверхностных детерминант мишеней рецепторами фагоцитов.

Некоторые объекты, например, многие бактерии или грибки-сахаромицеты, распознаются рецепторами экзогенных хемоаттрактантов напрямую. Определенную роль при этом могут играть рецепторы формил-метионина и таких сахаров, как манноза и фруктоза. Рецептор комплемента CR1 связывает липополисахариды бактериальных клеточных стенок напрямую. Но большинство объектов фагоцитоза нуждается в опсонизации, то есть распознается только после прикрепления сывороточных факторов, к которым рецепторы фагоцитов обладают значительным аффинитетом. Сывороточные факторы, играющие при этом роль «адаптеров», называют опсонинами. Выше уже говорилось, что не все хемоаттрактанты являются опсонинами.

Наиболее активны как опсонины иммуноглобулины (G1 и G2, в меньшей степени М и Е). Они распознаются Fс- или иными Fc-рецепторами. Фактор комплемента С3b и его нестабильная форма iС3b (как при прямой активации объектами фагоцитоза, так и при активации иммуноглобулинами и иммунными комплексами) также оказывают опсониновый эффект через рецепторы CR1-CR3.

Опсонизация в несколько раз увеличивает активность прилипания, причем эффект иммуноглобулинов и комплемента аддитивен. Опсонизация – мощный усилитель фагоцитарной активности. Однако иногда и опсониновый эффект дает осечки или даже оборачивается против организма.

Термин «опсонизация» может трактоваться расширительно. Фагоцитоз фибрина, деградирующих белков соединительной ткани, нуклеопротеидов усиливается после присоединения к ним фибронектина, что, по существу, делает этот макрофагальный продукт опсонином при рассасывании тромбов, рубцов и клеточного детрита.

С-реактивный белок фактически также является ко-опсонином, так как связывает С-белок пневмококков и других микробов и опосредует прикрепление к ним факторов комплемента и фагоцитов. Сходным действием в отношении некоторых бактерий обладает лизоцим.

Фагоцитоз апоптотических клеток или телец

Фагоцитоз апоптотических клеток или телец осуществляется окружающими здоровыми клетками, или паренхиматозными, или макрофагами. Апоптотические тельца быстро разрушаются в лизосомах, а окружающие клетки либо мигрируют, либо делятся, чтобы заполнить освободившееся после гибели клетки пространство.

Фагоцитоз апоптотических телец макрофагами или другими клетками активируется рецепторами на этих клетках: они захватывают и поглощают апоптотические клетки. Один из таких рецепторов на макрофагах – рецептор витронектина, который является β3-интегрином и активирует фагоцитоз апоптотических нейтрофилов.

Очень большое значение для учения о воспалении имеют исследования И. И. Мечникова по сравнительной патологии воспаления.

Еще в конце XIX столетия он высказал идею о том, что воспаление — это приспособительная и выработавшаяся в процессе эволюции тканевая и клеточная реакция организма и что одним из важнейших ее проявлений следует считать фагоцитоз микрофагами и макрофагами патогенных факторов и обеспечение таким образом выздоровления организма.

И. И. Мечников показал, что у низших одноклеточных организмов реакция на внешний раздражитель, например на микроб, сводится только к фагоцитозу и его перевариванию.

На более высших ступенях развития организмов вплоть до человека происходит совершенствование и усложнение реактивных процессов. С развитием сосудистой системы она включается в воспалительную реакцию, а с появлением нервной и эндокринной систем и эти последние оказываются в общей сложной системе нейрогуморальных механизмов, управляющих воспалением.

И. И. Мечников подчеркивал защитный характер воспаления, считая, что это весьма целесообразная реакция организма, закрепленная в эволюции.

Однако в то же время он указывал, что целительная сила природы — главный элемент, который составляет воспалительную реакцию, не есть еще приспособление, достигшее совершенства.

По мнению И. И. Мечникова, доказательством этого являются частые болезни и случаи преждевременной смерти от болезни, сопровождающиеся воспалением — вот почему так важно устранить это несовершенство воспалительной реакции деятельным вмешательством человека — врача, не удовлетворенного функцией естественной целебной силы больного.

Установлено, что в очаге воспаления возникает сложный комплекс изменений (морфологических, физиологических, биохимических) и сущность воспаления не может быть сведена только к фагоцитозу, как полагал И. И. Мечников.

Как справедливо писал И. И. Мечников, целесообразность воспаления относительная. На это необходимо указать потому, что противниками материализма учение о воспалении используется для проповеди идеалистических философских представлений в медицине, подчеркивается только целесообразная сторона воспалительной реакции и игнорируется ее приспособительный и защитный характер, закрепленный в эволюции животного организма.

Особенности фагоцитоза макрофагов и нейтрофилов. Экзоцитоз. Механизмы погружения и переваривания. Кислородные и бескислородные бактерицидные механизмы фагоцитов, роль антиоксидантных систем.

Нейтрофильные лейкоциты — первые лейкоциты, инфильтрую-щие зону воспаления, обеспечивают эффективную защиту от бактериальных и грибковых инфекций. Это высокодифференцированные короткоживущие подвижные клетки, которые быстро находят свои мишени и начинают их поглощение (фагоцитоз), связанное с респираторным взрывом, образованием фагосомы, дегрануляцией.

Если рана не инфицирована, содержание нейтрофилов в ней начинает быстро снижаться и уже через 2-3 суток среди лейкоцитов очага воспаления преобладают макрофаги.

Однако макрофаги отличаются от нейтрофилов рядом качеств, которые делают эти клетки особенно важными на более поздних стадиях острого воспаления и в механизмах заживления раны. Среди этих качеств следует прежде всего отметить значительно большую, чем у нейтрофилов, продолжительность жизни макрофагов в очаге воспаления. У макрофагов она измеряется месяцами, тогда как у нейтрофилов — 1-2 сутками. Макрофаги обладают способностью распознавать, а затем поглощать поврежденные нежизнеспособные клетки собственного организма, в том числе и нейтрофилы. С этим связана их чрезвычайная роль в «уборке» воспалительного экссудата.

Макрофаги — главные клетки, участвующие в растворении и удалении из очага воспаления поврежденной соединительной ткани, что необходимо для последующей реконструкции тканей. Они синтезируют и секретируют нейтральные протеазы, разрушающие вне-клеточно коллагеновые и эластиновые волокна соединительной ткани: эластазу, коллагеназу, активатор плазминогена. Образующиеся в результате внеклеточного протеолиза соединительно-тканного матрикса мелкие фрагменты поглощаются затем макрофагами с помощью специальных рецепторов и разлагаются внутриклеточно с вовлечением лизосомальной системы.

Макрофаги играют одну из ключевых ролей в заживлении ран. У животных, лишенных мононуклеарных фагоцитов в эксперименте, раны не заживают. Это объясняется, в частности, тем, что макрофаги секретируют факторы роста для фибробластов и других мезен-химальных клеток, продуцируют факторы, увеличивающие синтез коллагена фибробластами, являются источником факторов, управляющих различными этапами ангиогенеза — реваскуляризации поврежденной ткани.

Наконец, активированные макрофаги продуцируют полипептидные гормоны, являющиеся медиаторами «ответа острой фазы»: интерлейкин-1, фактор некроза опухолей, интерлейкин-6. Эмиграция лейкоцитов обусловлена появлением в очаге воспаления специальных медиаторов — хемоаттрактантов.

Экзоцитоз (exocytosis. греч. exo — вне, снаружи и kytos — сосуд, здесь — клетка) — процесс выделения клеткой вещества во внеклеточное пространство; противоположен эндоцитозу). Инициирующую роль в процессах экзоцитоза любых клеток играют ионы кальция. За счет экзоцитоза происходит секреция многих макромолекул. При экзоцитозе белков у эукариот первоначально происходит селективное котрансляционное включение новосинтезируемых полипептидных цепей в эндоплазматический ретикулум через ттранслокон, их перемещение в аппарат Гольджи, а затем или в прелизосомный компартмент и лизосомы, или к цитоплазматической мембране, где часть белков встраивается в мембрану, а часть секретируется во внеклеточное пространство. У прокариот перенос полипептидных цепей в эндоплазматический ретикулум осуществляется посттрансляционно. Экзоцитоз разных соединений происходит с помощью транспортных пузырьков, секреторных гранул или вакуолей.

Погружение внешне выглядит как охват объекта фагоцитоза псевдоподиями или накат фагоцита на объект. Это наводит на мысль об общности механизмов хемотаксиса и погружения. Некоторые авторы, особенно, изучавшие фагоцитоз крупных частиц и клеток, уподобляют механизм погружения застегиванию молнии. При этом предполагается, что происходит последовательная ассоциация опсонических детерминант объекта с опсониновыми рецепторами фагоцита, таким образом, объект вдвигается в цитоплазму клетки. Поглощение объекта, покрытого иммуноглобулинами, происходит без дополнительных условий. При опсонизации С3b-фрагментом комплемента требуется одновременная активация фибронектинового и ламининового рецептора фагоцита внеклеточными лигандами, как если бы клетка «опиралась» на межклеточное вещество. Активация цитокиновых рецепторов фагоцита также может способствовать погружению объекта, опсонизированного C3b‑фрагментом комплемента.

В результате погружения, объект оказывается в цитоплазме фагоцита, полностью окруженный фагосомой, созданной путем инвагинации и замыкания участка клеточной мембраны. Процесс создания фагосомы, видимо, имеет много общего с образованием рецептосом при рецепторном эндоцитозе, когда окаймленные ямки плазматической мембраны, [315] содержащие белок цитоскелета клатрин, замыкаются в опушенные везикулы. При участии микрофиламентов цитоскелета и особых белков-фагозогенов, фагосома сливается с лизосомами и специфическими гранулами фагоцита (внутренняя дегрануляция), формируя фаголизосому, где и происходит завершающая стадия фагоцитоза. Все эти процессы зависят от кальция, протеинкиназы С и липидных внутриклеточных посредников, как и хемотаксис.

Ингибируя с помощью антилектинов слипание фагосомы с лизосомой, некоторые микробы (например, возбудители коклюша, микобактерии, трипаносомы) мешают завершенному фагоцитозу и персистируют внутри макрофагов. При незавершенном фагоцитозе воспаление характеризуется затяжным течением и рецидивами. Макрофаги с персистирующими микробами могут, под влиянием их токсинов, утрачивать антигенпредставляющие функции, оставаясь простыми резервуарами инфекции. Иммуноглобулиновая опсонизация и действие цитокинов способствуют завершению фагоцитоза.

При прилипании и погружении происходит явление, образно названное «отрыжкой при питании». Фагоцит освобождает часть содержимого гранул с медиаторами воспаления наружу. Это особенно характерно для момента слияния фагосом и лизосомами и венулами, так как фагосома может сохранять остаточные каналы, сообщающиеся с поверхностью клетки. Отрыжка при питании — разновидность экзоцитоза. Последний может реализоваться и путем прямой экскреции гранул, особенно, специфических гранул нейтрофилов. Дополнительно содержимое фагоцитов поступает в экссудат при их гибели Например, микобактерии туберкулеза выделяют внутри фагоцитов токсические для них депрессины), при фагоцитозе мембраноразрушающих агентов (кремний при силикозе, кристаллы уратов при подагре, лизосомотоксины при некоторых микозах). Если фагоцит прикрепляется к фиксированному в тканях материалу (иммунным комплексам на поверхности базальных мембран) или к непосильному по своим размерам для механизмов погружения макропаразиту (гельминтам и их личинкам), то наступает фрустрированный фагоцитоз (см. также с.288), сводящийся к орошению объекта и окружающих тканей цитотоксическим коктейлем фагоцита. Особенно часто к фрустрированному фагоцитозу прибегают самые малые по размерам среди фагоцитов — тромбоциты. Вся совокупность механизмов экзоцитоза усиливает бактерицидные, литические и повреждающие свойства экссудатов и позволяет начать воздействовать на возбудителей ещё до их поглощения. С другой стороны, это способствует вторичной альтерации собственных тканей в очаге воспаления.

Деградация объекта фагоцитоза (по классической терминологии — переваривание) служит заключительной стадией фагоцитоза. Главную роль здесь играют частично охарактеризованные выше кислород-зависимые цитотоксические механизмы фагоцитов (галогенизация и перекисное окисление компонентов захваченных объектов с участием гипохлорита, перекиси водорода, синглетного кислорода, гидроксильных радикалов, супероксидного аниона, оксийодидов и оксида азота). Вспомогательную роль выполняют бескислородные механизмы, подробно рассмотренные выше (см. описание альтерации): катионные антибиотические белки, лактоферрин, лизоцим и, возможно, мочевина. Бактерицидность последней используется стоматологами, добавляющими карбамид в зубную пасту. После глубокого повреждения всеми этими агентами поверхностных структур захваченного фагоцитом объекта, последний становится добычей лизосомальных гидролаз, завершающих разрушение мишени.

Механизмы эмиграции, краевого стояния и диапедеза лейкоцитов при воспалении. Роль взаимодействия лейкоцитов и эндотелия. Молекулы клеточной адгезии и их функции при воспалении. Нарушение адгезии.

Эмиграция(emigratio, от лат. emigrare — выселяться, переселяться) — выход лейкоцитов из сосудов в ткань. Осуществляется путем диапедеза главным образом через стенку венул. Эмиграция лейкоцитов в очаг является ключевым событием патогенеза воспаления. Одновременно, оказывая влияние на клетки, сосуды и кровь, компоненты лейкоцитов выступают как важные медиаторы и модуляторы воспаления, в том числе повреждения собственных тканей. Осуществляя раневое очищение, фагоциты создают предпосылки для репаративных явлений, где они стимулируют пролиферацию, дифференцировку и функциональную активность фибробластов и других клеток.

Механизм эмиграции (по И.И. Мечникову) состоит в явлении хемотаксиса.

Пусковым моментом активации лейкоцитов является воздействие на рецепторы (часто специфические) клеточных мембран разнообразных хемотаксических агентов (хематтрактантов),высвобождаемых микроорганизмами или фагоцитами, а также образующихся в ткани в результате действия воспалительного агента или под влиянием самих фагоцитов. Наиболее важными хематтрактантами являются: фрагменты комплемента, фибринопептиды и продукты деградации фибрина, калликреин, проактиватор плазминогена, фрагменты коллагена, фибронектин, метаболиты арахидоновой кислоты, цитокины, лимфокины, бактериальные пептиды, продукты распада гранулоцитов.

В результате связывания хематтрактантов с рецепторами и активации ферментов плазматической мембраны в фагоците развивается респираторный взрыв — резкое повышение потребления кислорода и образование активных его метаболитов. Этот процесс не имеет отношения к обеспечению фагоцита энергией. Он направлен на дополнительное вооружение фагоцита высокореактивными токсическими веществами для более эффективного уничтожения микроорганизмов. Наряду с дыхательным взрывом в фагоците происходят другие изменения: повышенная выработка особых мембранных гликопротеинов, определяющих адгезивность фагоцита; понижение поверхностного натяжения мембраны и изменение коллоидного состояния участков цитоплазмы (обратимый переход из геля в золь), что необходимо для образования псевдоподий; активация актиновых и миозиновых микрофиламентов, являющаяся основой миграции; усиленная секреция и выделение веществ, облегчающих прикрепление лейкоцита к эндотелию (лактоферрин, катионные белки, фибронектин, интерлейкины).

Лейкоциты выходят из осевого тока крови в плазматический.

Вследствие возрастания адгезивных свойств лейкоцитов и эндотелиальных клеток происходит приклеивание лейкоцитов к эндотелию — развивается феномен краевого стояния лейкоцитов

Повышение адгезивности эндотелияможет быть обусловлено:

Прилипание лейкоцитов к эндотелиюопосредовано следующими факторами:

  • • лейкоциты в фазе инициации воспаления активируются и образуют агрегаты; в результате активации лейкоцита его отрицательный заряд снижается, что уменьшает силы взаимного отталкивания между ним и отрицательно заряженным эндотелием;
  • • между лейкоцитами и эндотелием образуются кальциевые мостики (Са 2 + и другие двухвалентные ионы играют ключевую роль в прилипании лейкоцитов);
  • • в ходе активации в лейкоцитах усиливается синтез специфических гранул, некоторые компоненты которых, например лактоферрин, усиливают адгезивные свойства клеток;
  • • на мембране лейкоцитов возрастает экспрессия адгезивных гликопротеинов классов Мас-1 и LAF-1.

Первоначальный контакт лейкоцитов с эндотелием является весьма непрочным, и под влиянием кровотока они могут перекатываться по поверхности фибриновой пленки, однако контакт быстро стабилизируется, поскольку лейкоциты выделяют в зону слипания протеазы, обнажающие лектиноподобные участки мембраны эндотелиоцитов и придающие им повышенную адгезивность. Прямое отношение к прилипанию фагоцитов к эндотелию имеет выделяемый ими фибронектин. Занявшие краевое положение лейкоциты выпускают псевдоподии, которые проникают в межэндотелиальные щели и таким образом «переливаются» через эндотелиальный слой Эмиграции способствуют повышение сосудистой проницаемости и усиление тока жидкости из сосуда в ткань, существенно облегчающие прохождение сосудистой стенки для лейкоцита.

Оказавшись между эндотелиальным слоем и базальной мембраной, лейкоцит выделяет лизосомальные протеиназы, растворяющие ее, а также катионные белки, изменяющие коллоидное состояние базальной мембраны (обратимый переход из геля в золь), что обеспечивает повышенную проходимость ее для лейкоцита. Иммигрировавшие лейкоциты отделяются от наружной поверхности сосудистой стенки и амебоидными движениями направляются к центру очага воспаления что определяется градиентом концентрации хемотаксических веществ в очаге.

Первоначально среди лейкоцитов экссудата в очаге острого воспаления преобладают гранулоциты, в основном нейтрофилы, а затем — моноциты/макрофаги. Позже в очаге накапливаются лимфоциты.

Адгезивные молекулы получили свое название в связи с тем, что они способствуют прикреплению (адгезии) одной клетки к другой при выполнении ими своих функций. Молекулы клеточной адгезии либо постоянно присутствуют на мембране клетки, либо формируются на ней в ответ на специфический стимул.
В настоящее время адгезивные молекулы делят, на три большие группы.

  • ICAM-1 — intercellular adhesion molecule — молекула межклеточной адгезии.
  • LFA-3 — limphocyte function-associated antigen — антиген, ассоциируемый с функцией лимфоцитов.
  • VCAM-1 — vascular cell adhesion molecule — адгезивная молекула сосудистых клеток.
  • N-CAM — neural cell adhesion molecule — адгезивная молекула нейрональных клеток.
  • LFA-1 — limphocyte function-associated antigen — антиген, ассоциируемый с функцией лимфоцитов.
  • VLA-1 — very late activation antigen— антигенпозднейстадииактивации. —
  • VNR — vitronectin receptor — витронектиновый рецептор.
  • МАС-1 —monocyte adhesion complex — адгезивный комплекс моноцитов.
  • LECAM-1 — lectin-like cell adhesion molecule — лектинподобная клеточная адгезивная молекула.
  • GMP-140 — granule membrane protein — гранулярный мембранный протеин.
  • ELAM-1 — endotelial-leukocyte adhesion molecule — эндотелиально-лейкоцитарная адгезивная молекула.
  • PECAM — platelet-endotelial cell adhesion molecule — тромбоци- тарно-эндотелиальная адгезивная молекула.

Адгезивные молекулы обеспечивают следующие процессы:
Для лейкоцитов:

  • Прикрепление к сосудистому эндотелию;
  • Трансмиграцию через эндотелий; . .
  • Прикрепление к экстрацеллюлярному матриксу (фибронектин, ламинин, коллаген). ¦
    Для лимфоцитов:
  • Прикрепление друг к другу;
  • Реализацию хомминг-эффекта (миграцию в Т- и В-зоны в периферических лимфоидных органах);
  • Прикрепление к антигенпредставляющим клеткам.
  • Прикрепление к лейкоцитам;
  • Прикрепление к эндотелиальным клеткам.

При осуществлении своих основных функций для реализации иммунного ответа лимфоидные клетки вступают друг с другом в кооперативные взаимодействия, используя рецепторы и специфические лиганды (контрецепторы), имеющиеся на их поверхности.

НАРУШЕНИЕ АДГЕЗИИ. Наследуется по аутосомно-рецессивному типу.

Недостаточность адгезии лейкоцитов (НАЛ) является следствием недостаточности адгезионных гликопротеинов на поверхности лейкоцитов, что приводит к нарушению межклеточных взаимодействий, прилипания клеток к стенкам кровеносных сосудов, миграции клеток и взаимодействия с компонентами системы комплемента. Такая недостаточность нарушает способность гранулоцитов (и лимфоцитов) мигрировать через стенки сосудов в ткани, участвовать в цитотоксических реакциях и фагоцитозе бактерий.

Три различных типа синдромов:

  • НАЛ 1 (недостаток или дефект β2-интегринов)
  • НАЛ 2 (отсутствие фукозилированных углеводных лигандов для селектинов)
  • НАЛ 3 (недостаточная активации всех β-интегринов [1, 2 и 3]).

Тип 1 обусловлен мутациями гена интегрин-β2 (ITGB2), кодирующего CD18 в р2-интегринах. Тип 2 обусловлен мутациями гена переносчика дифосфат глюкозы (GDP)-фукозы.

Проявление симптоматики обычно начинается в раннем детстве.

Наиболее тяжелые поражения у детей проявляются как рецидивирующие или прогрессирующие некротические инфекции мягких тканей, вызванные стафилококковой или грамотрицательной микрофлорой, периодонтит, плохое заживление ран без образования гноя, лейкоцитоз и продолжительное заживление пупочной ранки (более 3 недель). Количество лейкоцитов высокое даже в периоды ремиссии. С течением времени контролировать инфекции становится все труднее.

Менее тяжелыми проявлениями у детей являются некоторые серьезные инфекции и небольшие отклонения в формуле крови. Такие дети не могут дожить до совершеннолетия без медицинского вмешательства.

При наличии 2 типа часто наблюдается задержка развития.

Ответ острой фазы (преиммунный ответ). Механизмы, роль, медиаторы, метаболические и патофизиологические изменения. Продромальный синдром. Патогенез, механизмы отдельных проявлений.

Ответ острой фазы (ООФ) разворачивается до окончания выработки клонов специфических лимфоцитов и до выработки специфических антител. Клинически ему соответствуют неспецифические изменения, наблюдающиеся при широком круге болезней в их начальной фазе и носящие название продромального синдрома.

Цитокины – ведущий фактор в запуске реакции острой фазы.

Цитокины – это продуцируемые клетками белково-пептидные факторы, осуществляющие короткодистантную регуляцию межклеточных и межсистемных взаимодействий.

Цитокины – это молекулы–посредники, обеспечивающие межклеточные коммуникации. Цитокины сигнализируют внутренним органам, эндокринной и нервной системе об интенсивности повреждения. Эффекты цитокинов реализуются через специфические рецепторы. Сразу же после повреждения или действия возбудителя, посредством цитокинов в печени стимулируется синтез целого ряда белков острой фазы (в основном они представлены глобулинами: С-реактивный белок (СРБ), сывороточный амилоид А, альфа1-антитрипсин, церулоплазмин, антигемофильный глобулин, гаптоглобин, компоненты комплемента, ферритин). Как правило, в норме данные белки отсутствуют и появляются в момент развития острой фазы. Острофазовые белки обладают выраженными антимикробными и антиоксидантными свойствами. У этих белков есть еще одно уникальное свойство – они связывают, а затем транспортируют к макрофагам ионы железа и цинка. Как оказалось, эти катионы необходимы для размножения микроорганизмов, особенно грамотрицательных.

Через выделение различных цитокинов сначала нейтрофилы, а позже эндотелиоциты, моноциты, гистиоциты, лимфоциты и фибробласты начинают участвовать не только в местных, но и в системных реакциях, в том числе в активизации различных звеньев и всей системы иммунитета, а также гипофиза, надпочечников и других регуляторных систем.

Если количество цитокинов очень велико, то ответные реакции органов и систем настолько разбалансированы, что наблюдается гиперэргическая форма ответа острой фазы, клинически соответствующая шокоподобным состояниям.

Основные биологические эффекты ответа острой фазы

* Под влиянием факторов, активирующих макрофаги (начало воспаления), происходит увеличение размеров макрофагов, изменение их строения, повышение скорости миграции и фагоцитарной активности

* Под влиянием факторов, тормозящих макрофаги (стадии завершения воспаления), отмечают снижение их способности к миграции и фагоцитозу, а также ускорению деления (элиминации) из макрофагов продуктов распада (цитолиза).

В начале развития воспалительной реакции больше выявляют провоспалительные эффекты ООФ, в конце воспаления – противовоспалительные эффекты.

  • * Провоспалительные эффекты ООФ обусловлены активизацией макрофагов, эндотелиоцитов, усилением экспрессии генов фосфолипазы А2, синтеза печенью СРБ, образованием хемоаттрактантов для фагоцитов.
  • * Противовоспалительные эффекты обусловлены повышением в крови содержания глюкокортикоидов, церулоплазмина, α1-антитрипсина. Чрезмерно выраженный ООФ может приводить к выраженному снижению массы тела, вплоть до истощения.

В организме эволюционно выработан ряд механизмов и систем, сдерживающих развитие преиммунного ответа. В качестве указанных факторов указывают:

  • * Глюкокортикоиды
  • * ИЛ-19
  • * Ингибирующий фактор роста β
  • * Интерфероны
  • * Аутоантитела к интерлейкинам и интерферонам

Белки острой фазы – это плазменные протеины, образующиеся преимущественно в печени, обладающие как прямым, так и опосредованным бактерицидным и/или бактериостатическим действием, служащие хемоатрактантами, неспецифическими опсонинами и ингибиторами альтерации.

Белки острой фазы – это сывороточные белки, выполняющие защитную функцию, концентрация которых резко возрастает в сыворотке крови при остром воспалении. Основной их источник – гепатоциты, в которых под влиянием провоспалительных цитокинов ИЛ-1, ИЛ-6, ФНО-α усиливается экспрессия соответствующих генов.

  • С-реактивный белок (СРБ): при воспалении концентрация СРБ в плазме крови может увеличивается – в 100 –1000 раз; установлена прямая связь между изменением уровня СРБ и тяжестью и динамикой клинических проявлений воспаления. Чем выше концентрация СРБ, тем сильнее тяжесть воспалительного процесса.
  • * Орозомукоид (кислый альфа1-гликопротеин) способен подавлять активность протеолитических ферментов, имеет антигепариновую активность, при повышении его концентрации в сыворотке ингибируется адгезия и агрегация тромбоцитов.
  • * Фибриноген не только важнейший из белков свертывания крови, но также и источник образования фибринопептидов, обладающих противовоспалительной активностью.
  • * Церулоплазмин – поливалентный окислитель (оксидаза), инактивирует супероксидные анионные радикалы, образующиеся при воспалении, и защищает тем самым, биологические мембраны.
  • * Гаптоглобин не только способен связывать гемоглобин с образованием комплекса, обладающего пероксидазной активностью, но достаточно эффективно ингибирует катепсины С, В и L. Гаптоглобин может участвовать и в утилизации некоторых патогенных бактерий.

Основные стимуляторы образования белков острой фазы – это ИЛ-6, ИЛ-1β, ФНОα, ИФН-7, трансформирующий фактор роста β. Эти цитокины, распространяясь с кровью, стимулируют клетки печени к синтезу и секреции белков острой фазы.

Ответ острой фазы обеспечивает раннюю защиту и дает возможность организму распознавать чужеродные субстанции при _инфекционном процессе, предваряя реализацию полноценного иммунного ответа. В острой фазе воспаления повышается синтез более чем 40 белков, обладающих в зависимости от природы стимула про- и противовоспалительными свойствами. Белки острой фазы играют важную роль в репарации тканей, связывают протеолитические ферменты, регулируют клеточный и гуморальный иммунитет.

Основные изменения в периферической крови при ответе острой фазы

  • 5. Ускорение СОЭ сопровождается повышением содержания фибриногена и глобулинов при одновременном снижении концентрации альбуминов (воспалительные, особенно гнойные процессы, бактериальные инфекции, ревматизм, опухоли с распадом ткани).
  • 6. Лейкоцитоз и его вид при ООФ зависит от вида и стадии основного заболевания. Чаще развивается нейтрофильный лейкоцитоз с ядерным сдвигом лейкоцитарной формулы влево. Последний возникает при различных бактериальных инфекциях, ревматизме, пневмонии и пр. Также выявляется при опухолях, интенсивных термических и механических травмах, ИМ, диабетической коме и др. Некоторые инфекции протекают с лейкопенией (грипп, брюшной тиф, паратиф, корь, краснуха)
  • 7. Эозинофильный лейкоцитоз может развиваться при различных аллергических заболеваниях и реакциях
  • 8. Базофильный лейкоцитоз развивается при различных опухолях, гемобластозах.
  • 9. Моноцитарный лейкоцитоз отмечается при инфекционном мононуклеозе, возвратном тифе, висцеральном лейшманиозе.
  • 10. Лимфоцитоз обычно часто выявляют при различных хронических инфекциях – туберкулезе, сифилисе, ревматизме, герпетической инфекции.

Продромальный период – это срок предвестников основного заболевания. Он охватывает время от появления первых симптомов болезни до его яркой клинической картины. Симптомы продромального периода носят неспецифический характер.

Продромальная стадия может иметь выраженные клинические проявления или же носить скрытый характер. В любом случае субъективно человек чувствует, что заболевает. В большинстве случаев по симптомам продромы трудно предугадать точный диагноз.

Стадия продромальных симптомов проявляется:

  • повышением температуры до субфебрильных цифр;
  • головными болями;
  • головокружениями;
  • немотивированной слабостью;
  • снижением аппетита;
  • общим недомоганием;
  • чувством разбитости.

Такие явления связаны с накоплением достаточного количества возбудителя в организме и снижением его защитных механизмов. Первоначально возникает общий адаптационный синдром — совокупность неспецифических реакций всего организма, носящих приспособительный и защитный характер. При срыве механизмов адаптации головной мозг реагирует на воздействие инфекционного агента развитием патологических синдромов. В их основе лежат:

  • внутричерепная гипертензия;
  • отек мозга;
  • нарушения ликвородинамики;
  • центральные вегетативные расстройства;
  • дисфункция гормональной системы.

Для части инфекций существуют специфические проявления продромы, типичные для конкретного заболевания (пятна Коплика при кори, папулезные высыпания при сифилисе).

78. Стадии онкогенеза, их механизм. Роль иммунного надзора и неиммунных факторов резистентности организма в онкогенезе. Предраковые состояния. Понятия: доброкачественная и злокачественная опухоль.

в процессе онко-генеза можно условно выделить несколько общих этапов.

  1. • На первом этапе происходит взаимодействие канцерогенов химической, фи­зической и биологической природы с протоонкогенами и антионкогенами (онкосупрессорами) генома нормальной клетки.
  2. • В результате такого взаимодействия на втором этапе канцерогенеза по­давляется активность онкосупрессоров, а также происходит трансфор­мация протоонкогенов в онкогены. Экспрессия онкогена — необходи­мое и достаточное условие для трансформации нормальной клетки в опухолевую.
  3. • В результате подавления активности онкосупрессоров и экспрессии онкоге­нов на третьем этапе синтезируются и реализуют свои эффекты (непосред­ственно или с участием клеточных факторов роста и рецепторов к ним) он-кобелки. С этого момента генотипически изменённая клетка приобретает опухолевый фенотип.
  4. • На четвёртом этапе опухолевая клетка начинает бесконтрольно проли-ферировать, что ведёт к формированию новообразования (опухолевого узла).

Неиммунные механизмы.Эти механизмы осуществляют надзор за сохранением нормального (индиви­дуального и однородного) клеточного состава организма. Реализуют эти механизмы как клетки, так и гуморальные факторы.

Иммунные механизмы. Эти механизмы реализуют клеточное и гуморальное звенья иммунитета.

Предраковые состояния можно условно разделить на облигатные и факультативные. Облигатный предрак — стадия ранней онкологической патологии, которая рано или поздно трансформируется в рак. Эти изменения требуют радикального лечения. Факультативный предрак вовсе не обязательно перейдет в злокачественную опухоль, он требует внимательного наблюдения за собой, но не лечения. Иногда его называют «фоновым заболеванием», в некоторых случаях, например при антацидном гастрите или лейкоплакии уместен термин «дисплазия» (эпителиальная дисплазия). Это понятие включает в себя клеточную атипию, нарушение дифференцировки и структуры слизистой оболочки и имеет несколько степеней развития: слабую, умеренную и тяжелую. К предраковым изменениям следует относить лишь тяжелую дисплазию.

Доброкачественные опухоли. Клетки доброкачественной опухоли морфологически идентичны или похожи на нормальные клетки—предшественники и формируют характерные — высокодифференцированные для данной ткани структуры. Такие опухоли растут мед­ленно, не метастазируют и с клинической и прогностической точек зрения их расценивают как доброкачественные.

Злокачественные опухоли. Клетки злокачественной опухоли морфологически отличаются от нормальной клетки—предшественника, соседних опухолевых клеток и образуют искажённые тканевые структуры (или вовсе их не образу­ют) — низкодифференцированные, анапластические. Эти опухоли растут быстро, прорастают в соседние структуры, а отдельные опухолевые клетки формируют близко расположенные или отдалённые точки роста — метастазы.С клиничес­кой и прогностической точек зрения такие опухоли расценивают как злокаче­ственные.

Дата добавления: 2018-08-06 ; просмотров: 898 ; ЗАКАЗАТЬ РАБОТУ

источник